Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species
نویسندگان
چکیده
The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39 °S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19 °C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15 °C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation to negative physiological impacts, and that this may also be the case for other benthic organisms.
منابع مشابه
Regulation of keystone predation by small changes in ocean temperature
Key species interactions that are sensitive to temperature may act as leverage points through which small changes in climate could generate large changes in natural communities. Field and laboratory experiments showed that a slight decrease in water temperature dramatically reduced the effects of a keystone predator, the sea star Pisaster ochraceus, on its principal prey. Ongoing changes in pat...
متن کاملRegime Shifts, Community Change and Population Booms of Keystone Predators at the Channel Islands
The ochre seastar (Pisaster ochraceus) is a common inhabitant of rocky intertidal shores from Alaska to Baja. It is the quintessential “keystone” predator, and it has been shown to have an inordinately large influence on the diversity and structure of rocky shore communities. For this reason, it has been a focal species in the monitoring programs of the Channel Islands National Park, the Channe...
متن کاملPositive and negative effects of mesograzers on early‐colonizing species in an intertidal rocky‐shore community
The ecological consequences of human-driven overexploitation and loss of keystone consumers are still unclear. In intertidal rocky shores over the world, the decrease of keystone macrograzers has resulted in an increase in the dominance of herbivores with smaller body (i.e., "mesograzers"), which could potentially alter community assembly and structure. Here, we experimentally tested whether me...
متن کاملEffects of CO2-driven ocean acidification on the early developmental stages of invertebrates
CO2 emissions arising from the burning of fossil fuels have altered seawater chemistry far more rapidly than the Earth has previously experienced, and the rate and extent of this change are expected to affect shallow water marine organisms. The increased CO2 diffuses from the atmosphere into ocean surface waters, resulting in increased partial pressure of CO2, and reduced [CO3] and pH. The CO2-...
متن کاملCan crabs kill like a keystone predator? A field-test of the effects of crab predation on mussel mortality on a northeast Pacific rocky shore
Predation can strongly influence community structure and ecosystem function, so the loss of key predators can have dramatic ecological consequences, unless other predatory species in the system are capable of playing similar ecological roles. In light of the recent outbreak of sea star wasting disease (SSWD) and subsequent depletion of west coast sea star populations, including those of the key...
متن کامل